Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2862, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580648

RESUMO

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.


Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Proteína BRCA2/genética , DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos
2.
Mol Cancer Ther ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064712

RESUMO

Anticancer nucleosides are effective against solid tumors and hematological malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4'-ethynyl-2'-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (DCK) phosphorylation for its activity and induced replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å co-crystal structure of DCK bound to EdC and UDP reveals how the rigid 4'-alkyne of EdC fits within the active site of DCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared to FDA approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a pre-clinical nucleoside prodrug candidate for DLBCL and ALL.

4.
BMC Genomics ; 24(1): 212, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095444

RESUMO

BACKGROUND: Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS: Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS: Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS: Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Predisposição Genética para Doença , Replicação do DNA , Mutação em Linhagem Germinativa , Células Germinativas
5.
RNA ; 29(8): 1288-1300, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37105714

RESUMO

Synthetic RNA oligonucleotides composed of canonical and modified ribonucleotides are highly effective for RNA antisense therapeutics and RNA-based genome engineering applications utilizing CRISPR-Cas9. Yet, synthesis of synthetic RNA using phosphoramidite chemistry is highly inefficient and expensive relative to DNA oligonucleotides, especially for relatively long RNA oligonucleotides. Thus, new biotechnologies are needed to significantly reduce costs, while increasing synthesis rates and yields of synthetic RNA. Here, we engineer human DNA polymerase theta (Polθ) variants and demonstrate their ability to synthesize long (95-200 nt) RNA oligonucleotides with canonical ribonucleotides and ribonucleotide analogs commonly used for stabilizing RNA for therapeutic and genome engineering applications. In contrast to natural promoter-dependent RNA polymerases, Polθ variants synthesize RNA by initiating from DNA or RNA primers, which enables the production of RNA without short abortive byproducts. Remarkably, Polθ variants show the lower capacity to misincorporate ribonucleotides compared to T7 RNA polymerase. Automation of this enzymatic RNA synthesis technology can potentially increase yields while reducing costs of synthetic RNA oligonucleotide production.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , Humanos , RNA/genética , RNA Polimerases Dirigidas por DNA/genética , DNA/genética , Ribonucleotídeos/genética , Oligonucleotídeos
7.
Nat Struct Mol Biol ; 30(1): 107-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536104

RESUMO

The double-strand break (DSB) repair pathway called microhomology-mediated end-joining (MMEJ) is thought to be dependent on DNA polymerase theta (Polθ) and occur independently of nonhomologous end-joining (NHEJ) factors. An unresolved question is whether MMEJ is facilitated by a single Polθ-mediated end-joining pathway or consists of additional undiscovered pathways. We find that human X-family Polλ, which functions in NHEJ, additionally exhibits robust MMEJ activity like Polθ. Polλ promotes MMEJ in mammalian cells independently of essential NHEJ factors LIG4/XRCC4 and Polθ, which reveals a distinct Polλ-dependent MMEJ mechanism. X-ray crystallography employing in situ photo-induced DSB formation captured Polλ in the act of stabilizing a microhomology-mediated DNA synapse with incoming nucleotide at 2.0 Å resolution and reveals how Polλ performs replication across a DNA synapse joined by minimal base-pairing. Last, we find that Polλ is semisynthetic lethal with BRCA1 and BRCA2. Together, these studies indicate Polλ MMEJ as a distinct DSB repair mechanism.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Animais , Humanos , Reparo do DNA por Junção de Extremidades , DNA , Mamíferos
8.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117057

RESUMO

Genome-embedded ribonucleotides arrest replicative DNA polymerases (Pols) and cause DNA breaks. Whether mammalian DNA repair Pols efficiently use template ribonucleotides and promote RNA-templated DNA repair synthesis remains unknown. We find that human Polθ reverse transcribes RNA, similar to retroviral reverse transcriptases (RTs). Polθ exhibits a significantly higher velocity and fidelity of deoxyribonucleotide incorporation on RNA versus DNA. The 3.2-Šcrystal structure of Polθ on a DNA/RNA primer-template with bound deoxyribonucleotide reveals that the enzyme undergoes a major structural transformation within the thumb subdomain to accommodate A-form DNA/RNA and forms multiple hydrogen bonds with template ribose 2'-hydroxyl groups like retroviral RTs. Last, we find that Polθ promotes RNA-templated DNA repair in mammalian cells. These findings suggest that Polθ was selected to accommodate template ribonucleotides during DNA repair.


Assuntos
DNA Polimerase Dirigida por DNA , RNA , Animais , DNA/química , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , Desoxirribonucleotídeos , Humanos , Mamíferos/genética , Ribonucleotídeos
9.
Cell Rep ; 34(10): 108820, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691100

RESUMO

DNA polymerase θ (Polθ) confers resistance to chemotherapy agents that cause DNA-protein crosslinks (DPCs) at double-strand breaks (DSBs), such as topoisomerase inhibitors. This suggests Polθ might facilitate DPC repair by microhomology-mediated end-joining (MMEJ). Here, we investigate Polθ repair of DSBs carrying DPCs by monitoring MMEJ in Xenopus egg extracts. MMEJ in extracts is dependent on Polθ, exhibits the MMEJ repair signature, and efficiently repairs 5' terminal DPCs independently of non-homologous end-joining and the replisome. We demonstrate that Polθ promotes the repair of 5' terminal DPCs in mammalian cells by using an MMEJ reporter and find that Polθ confers resistance to formaldehyde in addition to topoisomerase inhibitors. Dual deficiency in Polθ and tyrosyl-DNA phosphodiesterase 2 (TDP2) causes severe cellular sensitivity to etoposide, which demonstrates MMEJ as an independent DPC repair pathway. These studies recapitulate MMEJ in vitro and elucidate how Polθ confers resistance to etoposide.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Animais , Linhagem Celular , DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Formaldeído/farmacologia , Humanos , Camundongos , Óvulo/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo
11.
Nat Commun ; 10(1): 4423, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562312

RESUMO

DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Domínio Catalítico , Quebras de DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida
12.
Nucleic Acids Res ; 47(7): 3272-3283, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30818397

RESUMO

Site-specific modification of synthetic and cellular RNA such as with specific nucleobases, fluorophores and attachment chemistries is important for a variety of basic and applied research applications. However, simple and efficient methods to modify RNA such as at the 3' terminus with specific nucleobases or nucleotide analogs conjugated to various chemical moieties are lacking. Here, we develop and characterize a one-step enzymatic method to modify RNA 3' termini using recombinant human polymerase theta (Polθ). We demonstrate that Polθ efficiently adds 30-50 2'-deoxyribonucleotides to the 3' terminus of RNA molecules of various lengths and sequences, and extends RNA 3' termini with an assortment of 2'-deoxy and 2',3'-dideoxy ribonucleotide analogs containing functional chemistries, such as high affinity attachment moieties and fluorophores. In contrast to Polθ, terminal deoxynucleotidyl transferase (TdT) is unable to use RNA as a substrate altogether. Overall, Polθ shows a strong preference for adding deoxyribonucleotides to RNA, but can also add ribonucleotides with relatively high efficiency in particular sequence contexts. We anticipate that this unique activity of Polθ will become invaluable for applications requiring 3' terminal modification of RNA and potentially enzymatic synthesis of RNA.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , DNA Nucleotidilexotransferase/química , DNA Nucleotidilexotransferase/metabolismo , DNA Polimerase Dirigida por DNA/química , Humanos , RNA Mensageiro/genética
13.
Sci Rep ; 8(1): 17384, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478404

RESUMO

The spread of Zika virus (ZIKV) has caused an international health emergency due to its ability to cause microcephaly in infants. Yet, our knowledge of how ZIKV replicates at the molecular level is limited. For example, how the non-structural protein 5 (NS5) performs replication, and in particular whether the N-terminal methytransferase (MTase) domain is essential for the function of the C-terminal RNA-dependent RNA polymerase (RdRp) remains unclear. In contrast to previous reports, we find that MTase is absolutely essential for all activities of RdRp in vitro. For instance, the MTase domain confers stability onto the RdRp elongation complex (EC) and and is required for de novo RNA synthesis and nucleotide incorporation by RdRp. Finally, structure function analyses identify key conserved residues at the MTase-RdRp interface that specifically activate RdRp elongation and are essential for ZIKV replication in Huh-7.5 cells. These data demonstrate the requirement for the MTase-RdRp interface in ZIKV replication and identify a specific site within this region as a potential site for therapeutic development.


Assuntos
Metiltransferases/genética , RNA Polimerase Dependente de RNA/genética , Replicação Viral/genética , Zika virus/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia
14.
Nat Commun ; 9(1): 1091, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545568

RESUMO

Genetic studies in yeast indicate that RNA transcripts facilitate homology-directed DNA repair in a manner that is dependent on RAD52. The molecular basis for so-called RNA-DNA repair, however, remains unknown. Using reconstitution assays, we demonstrate that RAD52 directly cooperates with RNA as a sequence-directed ribonucleoprotein complex to promote two related modes of RNA-DNA repair. In a RNA-bridging mechanism, RAD52 assembles recombinant RNA-DNA hybrids that coordinate synapsis and ligation of homologous DNA breaks. In an RNA-templated mechanism, RAD52-mediated RNA-DNA hybrids enable reverse transcription-dependent RNA-to-DNA sequence transfer at DNA breaks that licenses subsequent DNA recombination. Notably, we show that both mechanisms of RNA-DNA repair are promoted by transcription of a homologous DNA template in trans. In summary, these data elucidate how RNA transcripts cooperate with RAD52 to coordinate homology-directed DNA recombination and repair in the absence of a DNA donor, and demonstrate a direct role for transcription in RNA-DNA repair.


Assuntos
Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Reparo do DNA/fisiologia , RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Reparo de DNA por Recombinação/genética , Reparo de DNA por Recombinação/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Biol Chem ; 293(14): 5259-5269, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444826

RESUMO

POLQ is a unique multifunctional replication and repair gene that encodes for a N-terminal superfamily 2 helicase and a C-terminal A-family polymerase. Although the function of the polymerase domain has been investigated, little is understood regarding the helicase domain. Multiple studies have reported that polymerase θ-helicase (Polθ-helicase) is unable to unwind DNA. However, it exhibits ATPase activity that is stimulated by single-stranded DNA, which presents a biochemical conundrum. In contrast to previous reports, we demonstrate that Polθ-helicase (residues 1-894) efficiently unwinds DNA with 3'-5' polarity, including DNA with 3' or 5' overhangs, blunt-ended DNA, and replication forks. Polθ-helicase also efficiently unwinds RNA-DNA hybrids and exhibits a preference for unwinding the lagging strand at replication forks, similar to related HELQ helicase. Finally, we find that Polθ-helicase can facilitate strand displacement synthesis by Polθ-polymerase, suggesting a plausible function for the helicase domain. Taken together, these findings indicate nucleic acid unwinding as a relevant activity for Polθ in replication repair.


Assuntos
DNA Helicases/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Humanos , Hibridização de Ácido Nucleico , Ligação Proteica , Recombinação Genética/genética
16.
Nat Struct Mol Biol ; 24(12): 1116-1123, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058711

RESUMO

Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure-function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR-Cas9- mediated gene targeting by homologous recombination (HR). In vitro assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.


Assuntos
Domínio Catalítico/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase Dirigida por DNA/genética , Células-Tronco Embrionárias/citologia , Proteína de Replicação A/antagonistas & inibidores , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Replicação A/genética , Relação Estrutura-Atividade , Translocação Genética/genética
17.
Bio Protoc ; 7(12)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28824932

RESUMO

DNA polymerase θ (Polθ) is a promiscuous enzyme that is essential for the error-prone DNA double-strand break (DSB) repair pathway called alternative end-joining (alt-EJ). During this form of DSB repair, Polθ performs terminal transferase activity at the 3' termini of resected DSBs via templated and non-templated nucleotide addition cycles. Since human Polθ is able to modify the 3' terminal ends of both DNA and RNA with a wide array of large and diverse ribonucleotide and deoxyribonucleotide analogs, its terminal transferase activity is more useful for biotechnology applications than terminal deoxynucleotidyl transferase (TdT). Here, we present in detail simple methods by which purified human Polθ is utilized to modify the 3' terminal ends of RNA and DNA for various applications in biotechnology and biomedical research.

18.
Nucleic Acids Res ; 44(19): 9381-9392, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27591252

RESUMO

DNA polymerase θ (Polθ) is a unique A-family polymerase that is essential for alternative end-joining (alt-EJ) of double-strand breaks (DSBs) and performs translesion synthesis. Because Polθ is highly expressed in cancer cells, confers resistance to ionizing radiation and chemotherapy agents, and promotes the survival of homologous recombination (HR) deficient cells, it represents a promising new cancer drug target. As a result, identifying substrates that are selective for this enzyme is a priority. Here, we demonstrate that Polθ efficiently and selectively incorporates into DNA large benzo-expanded nucleotide analogs (dxAMP, dxGMP, dxTMP, dxAMP) which exhibit canonical base-pairing and enhanced base stacking. In contrast, functionally related Y-family translesion polymerases exhibit a severely reduced ability to incorporate dxNMPs, and all other human polymerases tested from the X, B and A families fail to incorporate them under the same conditions as Polθ. We further find that Polθ is inhibited after multiple dxGMP incorporation events, and that Polθ efficiency for dxGMP incorporation approaches that of native dGMP. These data demonstrate a unique function for Polθ in incorporating synthetic large-sized nucleotides and suggest the future possibility of the use of dxG nucleoside or related prodrug analogs as selective inhibitors of Polθ activity.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/genética , DNA/metabolismo , Humanos , Nucleotídeos/metabolismo , Ligação Proteica
19.
Genes (Basel) ; 7(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657134

RESUMO

The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Biochemical and cellular studies show that Polθ exhibits a unique ability to perform alt-EJ and during this process the polymerase generates insertion mutations due to its robust terminal transferase activity which involves template-dependent and independent modes of DNA synthesis. Intriguingly, the POLQ gene also encodes for a conserved superfamily 2 Hel308-type ATP-dependent helicase domain which likely assists in alt-EJ and was reported to suppress homologous recombination (HR) via its anti-recombinase activity. Here, we review our current knowledge of Polθ-mediated end-joining, the specific activities of the polymerase and helicase domains, and put into perspective how this multifunctional enzyme promotes alt-EJ repair of DSBs formed during S and G2 cell cycle phases.

20.
Elife ; 52016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27311885

RESUMO

DNA polymerase θ (Polθ) promotes insertion mutations during alternative end-joining (alt-EJ) by an unknown mechanism. Here, we discover that mammalian Polθ transfers nucleotides to the 3' terminus of DNA during alt-EJ in vitro and in vivo by oscillating between three different modes of terminal transferase activity: non-templated extension, templated extension in cis, and templated extension in trans. This switching mechanism requires manganese as a co-factor for Polθ template-independent activity and allows for random combinations of templated and non-templated nucleotide insertions. We further find that Polθ terminal transferase activity is most efficient on DNA containing 3' overhangs, is facilitated by an insertion loop and conserved residues that hold the 3' primer terminus, and is surprisingly more proficient than terminal deoxynucleotidyl transferase. In summary, this report identifies an unprecedented switching mechanism used by Polθ to generate genetic diversity during alt-EJ and characterizes Polθ as among the most proficient terminal transferases known.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Nucleotidilexotransferase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Animais , Coenzimas/metabolismo , Células-Tronco Embrionárias , Manganês/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...